St. Helens Local Plan Examination

APPENDIX 7

Response to Inspector's Matters, Issues and Questions Matter 4: Allocations, Safeguarded Land and Green Belt Boundaries Persimmon Homes North West (R01145)

MAY 2021

List of Appendices

- **1. Illustrative Masterplan Escape**
- 2. Green Belt Assessment LUC
- 3. Landscape Feasibility Statement LUC
- 4. Ecological Statement LUC
- 5. Transport Issues Note Croft/Eddisons
- 6 a/b. Site Access Plans (Billinge Road and Garswood Road) Croft/Eddisons
- 7. Flood Risk Assessment / Drainage Strategy BEK Enviro

Weathercock Hill Farm, Garswood

Flood Risk Assessment & Drainage Strategy

April 2021

Project Information	n
Project:	Weathercock Hill Farm, Garswood
Report Title:	Flood Risk Assessment & Drainage Strategy
Client:	Persimmon Homes Ltd
Instruction:	The instruction to undertake this Flood Risk Assessment & Drainage Strategy was received from Sean McBride of Persimmon Homes Ltd
File Ref:	13809-FRA & DRA-01

Approval Record	
Author:	Jessica Roberts BSc (Hons)
Checker:	Manfredi Toraldo MEng MSc MCIWEM
Technical Checker:	Aled Williams BSc (Hons) MCIWEM
Approver:	Victoria Griffin BSc (Hon) MSc MIEnvSc CEnv

Document History		
Revision	Date	Comment
01	27/04/2021	First issue

The copyright in this document (including its electronic form) shall remain vested in Waterco Limited (Waterco) but the Client shall have a licence to copy and use the document for the purpose for which it was provided. Waterco shall not be liable for the use by any person of the document for any purpose other than that for which the same was provided by Waterco. This document shall not be reproduced in whole or in part or relied upon by third parties for any use whatsoever without the express written authority of Waterco.

Contents

Introduction	1
Existing Conditions	1
Development Proposals	3
Flood Zone Classification and Policy Context	3
Consultation	5
Sources of Flooding and Probability	6
Mitigation	9
Surface Water Management	10
Maintenance	12
Foul Drainage	13
Conclusions	14
Recommendations	15

Appendices

Appendix A	Location Plan and Aerial Image
Appendix B	Topographical Data
Appendix C	Historical Borehole Record
Appendix D	United Utilities Sewer Plan and Correspondence
Appendix E	Indicative Development Plan
Appendix F	EA Flood Maps
Appendix G	LLFA Correspondence
Appendix H	REFH2 Greenfield Runoff Rates
Appendix I	MicroDrainage Simulation
Appendix J	SuDS Maintenance Schedules
Appendix K	CDRA

Introduction

Waterco has been commissioned to undertake a Flood Risk Assessment and Drainage Strategy in relation to a proposed residential development at Weathercock Hill Farm, Billinge Road, Garswood, St. Helens, WN4 OSP.

The purpose of this report is to outline the potential flood risk to the site, the impact of the proposed development on flood risk elsewhere, and the proposed measures which could be incorporated to mitigate the identified risk. This report has been prepared in accordance with the guidance contained in the National Planning Policy Framework (NPPF) and the National Planning Practice Guidance (NPPG): Flood Risk and Coastal Change.

As Lead Local Flood Authority (LLFA), St Helens Council is a statutory consultee for major planning applications in relation to surface water drainage, requiring that all planning applications are accompanied by a Sustainable Drainage Strategy. The aim of the Sustainable Drainage Strategy is to identify water management measures, including Sustainable Drainage Systems (SuDS), to provide surface water runoff reduction and treatment.

Existing Conditions

The site covers an area of approximately 10.02 hectares (ha) and is located at National Grid Reference (NGR): 355150, 399960. A location plan and an aerial image are included in Appendix A.

Online mapping (including Google Maps / Google Streetview imagery, accessed April 2021) shows that the site comprises agricultural land. The site is bordered by Billinge Road to the north, Smock Lane to the east, residential properties to the south, and Garswood Road and residential properties to the west. Access to the site is provided from Garswood Road.

Local Topography

A topographical survey has been undertaken by RJP Surveying Consultants Ltd in April 2021. The topographical survey shows that the site slopes from 91.57m Above Ordnance Datum (m AOD) in the northwest to 82.31m AOD in the north-east.

Topographic levels to m AOD have also been derived from a 1m resolution Environment Agency (EA) composite 'Light Detecting and Ranging' (LiDAR) Digital Terrain Model (DTM). The LiDAR data corroborates with the topographic survey and confirms that the site generally slopes from north-west to east.

Topographical data is included in Appendix B.

Ground Conditions

Reference to the British Geological Survey (BGS) online mapping (1:50,000 scale) indicates that the northwestern extent of the site is underlain by superficial deposits of Devensian Till, generally comprising diamicton. There are no superficial deposits recorded in the south-eastern extent of the site.

The majority of the site is underlain by the Pennine Lower Coal Measures Formation, consisting of Mudstone. A limited area in the southern extent of the site is underlain by Trencherbone Rock, generally consisting of Sandstone.

The geological mapping is available at a scale of 1:50,000 and as such may not be accurate on a site-specific basis.

The closest historical BGS borehole record is located approximately 125m west of the site within the Pennine Lower Coal Measures (BGS reference SD50SW193) and is included in Appendix C. The cable percussive exploratory hole was advanced to a depth of 9 metres below ground level (m bgl). The borehole identified Made Ground up to a depth of 0.4m.bgl underlain by sandy brown clay, grey-black sandy clay, gravel and orange sand to 8.7m.bgl. The Pennine Lower Coal Measures Formation was encountered towards the base of the borehole at 8.7m.bgl. Groundwater was struck at a depth of 5.80m.bgl rising to 3.50m.bgl within 30 minutes.

According to the EA's Aquifer Designation data, obtained from MAGIC's online mapping [accessed April 2021], the superficial deposits are classified as a Secondary Undifferentiated Aquifer. Secondary Undifferentiated Aquifers are assigned in 'cases where it has not been possible to attribute either category A or B to a rock type. In most cases, this means that the layer in question has previously been designated as both minor and non-aquifer in different locations due to the variable characteristics of the rock type'.

The underlying Pennine Lower Coal Measures Formation is described as a Secondary A Aquifer. Secondary A Aquifers are 'permeable layers capable of supporting water supplies at a local rather than strategic scale, and in some cases forming an important source of base flow to rivers. These are generally aquifers formerly classified as minor aquifers'.

The EA's 'Source Protection Zones' data, obtained from MAGIC's online mapping [accessed April 2021], indicates that the site is not located within a Groundwater Source Protection Zone.

The Cranfield University 'Soilscapes' map [accessed April 2021] indicates that the site is underlain by 'Slowly permeable seasonally wet... loamy and clayey soils'.

Local Drainage

Public sewer records have been obtained from United Utilities (UU) and are included in Appendix D. The UU sewer records show that there is a 225mm public surface water sewer located in Smock Lane. The surface water sewer flows both north and south from a high point in Smock Lane. Public surface water manhole 1605, located to the south of the site, has a cover level of 85.06m AOD and an invert level of 82.67m AOD. Public surface water manhole 3902, located immediately east of the site, has a cover level of 82.30m AOD and an invert level of 80.40m AOD.

The UU sewer records also show that there is a 225mm public combined sewer located in Garswood Road flowing south-east. No cover or invert levels are provided. There is also a 100mm / 150mm public foul sewer located 40m east of the site flowing north within residential gardens.

Development Proposals

The proposed development is for approximately 258 residential properties with associated gardens and driveways, together with new access roads and landscaping. This report has been prepared to support the development of the final Masterplan. The indicative development plan, which is subject to change, is included in Appendix E.

The proposed development will introduce approximately 30,720m² of hardstanding, or 31% of the total site area, in the form of dwellings, driveways and access roads. The remaining 69,480m², or 69% of the total site area, will be occupied by soft landscaped areas.

Measurements have been taken from a .dwg version of the Viability Layout (drawing BRG/SDA/01) and are approximate only.

Flood Zone Classification and Policy Context

The EA 'Flood Map for Planning', included in Appendix F, shows that the site is located within Flood Zone 1 - an area outside of the extreme flood extent, considered to have a less than 0.1% annual probability of flooding from rivers or the sea.

In accordance with Table 2 of the NPPG: Flood Risk and Coastal Change, residential development is classified as 'more vulnerable'. Table 3 of the NPPG states that 'more vulnerable' development is considered appropriate within Flood Zone 1. The development therefore passes the flood risk Sequential Test and the Exception Test does not need to be applied.

Local Policy

The 'St. Helens Local Plan Core Strategy' (October 2012) is the existing principal planning framework for St. Helens Council. However, the St Helens Local Plan Core strategy contains no policies directly relating to flood risk.

The 'St. Helens Borough Local Plan 2020- 2035 Submission Draft' has recently been reviewed by the public, updated accordingly and submitted to the Planning Inspectorate for independent examination; it contains the following policy relating to flood risk and drainage:

'Policy LPC12: Flood Risk and Water Management Flood Risk

1. Any development proposal that may either be at risk of flooding or cause a material increase in flood risk elsewhere will only be permitted if the flooding issues have been fully assessed and any identified risks would be appropriately mitigated. Any assessment and mitigation should have regard to:

a) the St. Helens Strategic Flood Risk Assessment;

b) advice and guidance from relevant bodies including the Environment Agency and Lead Local Flood Authority; and

c) any relevant Surface Water Management Plan or local drainage strategy such as the Sankey Catchment Action Plan, Mersey Estuary Catchment Flood Management Plan or the North West River Basin Management Plan.

2. All development proposals must be supported by a Flood Risk Assessment appropriate to their nature and scale where they would be:

a) within flood zones 2 or 3; or

b) on a site of 1 hectare or larger within flood zone 1; or

c) on a site of 0.5 hectare or larger within a Critical Drainage Area; or

d) in any area identified by the Council as being at intermediate or high risk of surface water flooding.

3. New development should be located in accordance with a sequential approach as set out in national policy. Development on sites located in flood zones 2 or 3 will only be allowed if:

a) the Sequential Test has been applied and demonstrates that the development cannot reasonably be accommodated within an area at lower risk of flooding;

b) any applicable Exception Test required by national policy has been passed; and

c) appropriate mitigation or adaption measures are proposed to satisfactorily reduce the likelihood or impact of flooding.

4. Measures to manage or mitigate flood risk associated with or caused by new development must (as appropriate having regard to its scale and nature):

a) be designed to contribute to the biodiversity of the Borough unless it has been demonstrated that this would not be technically feasible;

b) protect heritage assets (such as buried archaeology);

c) be fully described in the development proposal; and

d) *be funded by the developer, including long-term maintenance.*

5. Any proposal for major development on a site that would abut, run alongside or straddle any watercourse in the Borough, must include measures to temporarily attenuate and filter flood water in order to: improve water quality; reduce peak flows during flooding; and reduce downstream flood risk, unless it has been demonstrated that this is not feasible or viable. In cases where measures are not currently feasible or viable, the development must not compromise the ability to implement such measures in the future.

6. The Flood Water Storage Safeguarding Areas as defined on the Policies Map shall be safeguarded for the provision of flood storage. Development within or adjacent to these areas that would have a negative impact

on their function as a flood storage area or on their potential to be developed for flood storage infrastructure will not be permitted.'

Local guidance documents including the St. Helens Council Strategic Flood Risk Assessment (SFRA) (April 2013), the St. Helens Council Preliminary Flood Risk Assessment (PFRA) (2017-2023), and the St Helens Sustainable Drainage Systems (SuDS) 2018 Design and Technical Guidance have been reviewed and inform this report.

Consultation

A consultation request was submitted to the LLFA in March 2021. A response is included within Appendix G. The LLFA have stated that:

'At this stage of the development and level of information, I am unable to provide formal comment on the layout or proposed drainage method. I am able to provide generic advice and guidance for the development along with answers to a few of your queries.

In terms of flood risk, there has been surface water runoff flooding from the farmland onto the highway Smock Lane (near the junction of Smock Lane and Billinge Road B5207), this is representative of the EA surface water flood risk mapping (30, 100, 1000 year return period).

St Helens Council have our own SuDS Guidance that is available in the link below. The files include the main guidance and local standards, a separate checklist for developers which needs to be submitted with each application, and a surface water runoff calculator. The runoff calculator is currently not available as it is going through technical updates. The full SuDs hierarchy will have to be followed for this development.

The NPPF climate change figures have now been superseded with higher values (40% is Council planning baseline) as shown in the government report (19th February 2019) and we will expect to see the surface water discharge rate to be at set to Greenfield runoff for the development. The site catchment discharge must follow where possible the natural drainage paths / location.'

A Consultation request was submitted to United Utilities in March 2021. In their response (Appendix D), UU have stated that:

'Foul Water

Foul flow from this site will be allowed to drain into the public foul water/combined sewer system. The foul connection point is required to be assessed further and has now been referred to our asset management team.

If you are able to identify an alternative, more suitable point of discharge, we request that you contact us at your earliest convenience so that we can assess suitability.

In accordance with our infrastructure plans we may ask you to change your point of connection. Therefore,

please contact us when you are ready to formalise your drainage proposals, we would suggest before you submit for Full Planning.

Surface Water

All surface water flow from the proposed development should drain in-line with the drainage hierarchy, as outlined in Paragraph 80, (Reference ID: 7-080-20150323), of the National Planning Practice Guidance. We also recommend you prioritise the use of multi-functional sustainable drainage systems for the management of surface water in accordance with national planning policy.

Generally, the aim should be to discharge surface run off as high up the following hierarchy of drainage options as reasonably practicable.

This is outlined as follows, in order of priority:

- 1. *into the ground (infiltration);*
- 2. to a surface waterbody;
- 3. to a surface water sewer or highway drain;
- 4. to a combined sewer.

.....

Existing Water Assets Crossing the Site

The Rivington Aqueduct crosses your site please refer to the information below for your consideration.

It is the developer responsibility to identify utilities on-site. Where clean water assets are shown on our records, we recommend that you contact our Water Pre-Development Team, via the following email address: DeveloperServicesWater@uuplc.co.uk. Further information for this service can be found on our website.'

Further correspondence has been submitted to UU and the LLFA regarding a potential surface water connection to the public surface water sewer in Smock Lane.

Sources of Flooding and Probability

Fluvial

The nearest watercourse is Down Brook which is located approximately 325m north of the site. Down Brook flows east in this location. There are no other watercourses in the immediate vicinity of the site.

The site is located within Flood Zone 1 on the EA's 'Flood Map for Planning' (Appendix F) meaning it has less than 0.1% annual probability of flooding from rivers and the sea.

The EA 'Historical Flood Map' (included in Appendix F) indicates that there are no historical records of flooding at or within the immediate vicinity of the site.

The site is situated approximately 5m above Down Brook and as such any potential flooding from this watercourse would not affect the site.

The risk of fluvial flooding is therefore considered to be very low.

Tidal

The site is situated at a minimum of approximately 82.30m AOD and is significantly above sea level. Therefore, the risk of tidal flooding is very low.

Surface Water

Surface water flooding occurs when rainwater does not drain away through the normal drainage system or soak into the ground. It is usually associated with high intensity rainfall events but can also occur with lower intensity rainfall or melting snow where the ground is saturated, frozen or developed, resulting in overland flow and ponding in depressions in topography. Surface water flooding can occur anywhere without warning. However, flow paths can be determined by consideration of contours and relative levels.

The EA 'Flood Risk from Surface Water' map (Appendix F) indicates that the majority of the site is shown at very low risk of surface water flooding, meaning it has a less than 0.1% annual probability of flooding. The EA mapping identifies a surface water flow route crossing the centre of the site from west to east, and an area of surface water ponding in the lower north-eastern extent of the site. The north-eastern extent of the site, where surface water ponding is identified by EA mapping, is shown to have a high risk of flooding, with a greater than 3.3% annual probability of occurrence.

The flooding mechanism at the site is such that during the high (greater than 3.3% annual probability) and medium (between a 1% and 3.3% annual probability) events, surface water flooding is generated on site and is associated with surface water ponding within topographical low points. A flood flow route generates to the west of the site during the high and medium risk events, however flows are contained within and directed south along Garswood Road, proceeding onto agricultural land south-west of the site.

During a low risk event (between a 1% and 0.1% annual probability), surface water flooding on Garswood Road reaches a sufficient height to enter the site, resulting in a flood flow route forming from west to east through the centre of the site. The additional flows entering the site during the low risk event result in an increased extent of surface water ponding in the lower north-eastern extent of the site.

The LLFA have records of surface water flooding affecting the north-eastern extent of the site and Smock Lane adjacent to the site. The LLFA have stated that: 'In terms of flood risk, there has been surface water runoff flooding from the farmland onto the highway Smock Lane (near the junction of Smock Lane and Billinge Road B5207), this is representative of the EA surface water flood risk mapping (30, 100, 1000 year return period).'

It can therefore be concluded that the north-eastern extent of the site is at potential risk of surface water

flooding with a greater than 3.3% annual probability. The flood extent is increased during a low risk event whereby a flood flow route crosses the site from west to east. The flood flow route is derived from Garswood Road and agricultural land beyond to the west.

Sewer

Flooding from sewers can occur when a sewer is overwhelmed by heavy rainfall, becomes blocked, is damaged, or is of inadequate capacity. Flooding is mostly applicable to combined and surface water sewers.

As stated above, there is a 225mm surface water sewer located in Smock Lane. There is also a 225mm public combined sewer located within Garswood Road.

Any potential flooding from the 225mm surface water sewer in Smock Lane would be directed north-east, away from the site, following the topography of the road. Any potential flooding from the 225mm public combined sewer in Garswood would be directed south, away from the site, following the local topography.

There are no records of sewer flooding affecting the site. The risk of sewer flooding is therefore considered to be low.

Groundwater

Groundwater flooding occurs when water levels underneath the ground rise above normal levels. Prolonged heavy rainfall soaks into the ground and can cause the ground to become saturated. This results in rising groundwater levels which leads to flooding above ground.

The PFRA states that 'there are known locations with high groundwater within St Helens however, there are no specific records or reported incidents of groundwater flooding. Therefore, it is considered currently that there are no groundwater flood incidents that would result in 'significant harmful consequences' as defined by the PFRA threshold.'

The majority of the site is underlain by superficial deposits of Devensian Till, generally comprising diamicton. The impermeable nature of the superficial deposits will limit the vertical migration of groundwater.

There are no records of groundwater flooding at or near to the site. It can therefore be concluded that the risk of groundwater flooding is low.

Artificial Sources

There are no canals within the vicinity of the site. The EA 'Flood Risk from Reservoirs' map (Appendix F) shows that the site is not at risk of flooding from reservoirs.

It can therefore be concluded that the risk of flooding from artificial sources is very low.

Summary of Potential Flooding

It can be concluded that surface water flooding is the main potential source of flood risk at this site. The associated risk should inform the site layout.

Mitigation

Taking a sequential approach to flood risk, and in order to ensure the development does not increase flood risk elsewhere through impacting on surface water flood flow routes, or removing flood storage, no development (including buildings and private gardens) should be located within the surface water flood extent shown on the EA 'Flood Risk from Surface Water Map' (Appendix F), reproduced in Figure 1 below.

Figure 1 – EA Flood Risk from Surface Water

The land shown within the surface water flood extent should be designated as public open space as to maintain flood flow routes. However, it is acknowledged that access roads will need to cross through the surface water flood extent. Where access roads cross the flood extent, consideration should be made at the detailed design stage to either ensure site levels within the flood flow route are not altered, or provision is made for culverts beneath access roads which cross the flood extent.

Finished floor levels should be set 150mm above surrounding ground levels in accordance with Building Regulations.

Surface Water Management

The proposed development will introduce approximately 30,720m² of hardstanding, or 31% of the total site area, in the form of dwellings, driveways and access roads. The remaining 69,480m² or 69% of the total site area will be occupied by soft landscaped areas.

The introduction of hardstanding area will result in an increase in surface water runoff rates and volumes. In order to ensure the proposed development will not increase flood risk elsewhere, surface water discharge from the site will be controlled.

The existing greenfield runoff rates have been estimated using the Revitalised Flood Hydrograph Model (ReFH2) method. A summary of the greenfield runoff rates for a range of events is provided as Appendix H. The existing 1 in 1 year greenfield runoff rate for the 10.02ha development site is 61.4 l/s.

A discharge rate of 61.4 l/s is proposed for this site subject to agreement with the LLFA and UU.

Attenuation Storage

In order to achieve a discharge rate of 61.4 l/s, attenuation storage will be required. An attenuation storage estimate has been undertaken using MicroDrainage and is included in Appendix I. An estimated storage volume of 1,694m³ will be required to accommodate the 1 in 100 year plus 40% Climate Change (CC) event. The storage estimate is based on storage within a tank or pond structure, a 1m design head and hydro-brake flow control. An impermeable drainage area of 33,790m² has been applied accounting for a 10% allowance for urban creep in accordance with Table 6a of the St Helens Sustainable Drainage Systems (SuDS) 2018 Design and Technical Guidance.

Discharge Method

Paragraph 080 of the NPPG: Flood Risk and Coastal Change sets out the following hierarchy of drainage options: into the ground (infiltration); to a surface water body; to a surface water sewer, highway drain or another drainage system; to a combined sewer.

Infiltration

The first consideration for the disposal of surface water is infiltration (soakaways and permeable surfaces).

The site is underlain by Devensian Till, generally comprising diamicton. There are no superficial deposits recorded in the south-eastern extent of the site. Given the likely impermeable nature of the superficial deposits recorded across the majority of the site, infiltration techniques may not be feasible.

Infiltration tests should be undertaken in accordance with the BRE365 specification to determine the suitability of infiltration techniques.

Watercourse

Where infiltration techniques are not suitable, a connection to watercourse is the next consideration. There are no watercourses within the immediate vicinity of the site. A connection to Down Brook 325m north of the site would require crossing through 3rd party urbanised land and is not considered a feasible option.

Sewer

As disposal of surface water to watercourse is not feasible, a connection to the public sewer system is the final consideration. There is a 225mm public surface water sewer located in Smock Lane. Surface water manhole 3902 located immediately east of the site in Smock Lane has an identified cover level of 82.30m AOD and an invert level of 80.4m AOD. The minimum site level is 82.31m, therefore, a gravity connection to this sewer appears to be a feasible option. A provisional discharge rate of 61.4 l/s (1 in 1 year runoff rate) is proposed subject to agreement with UU and the LLFA.

Sustainable Drainage Systems

Attenuation storage should be provided in the form of SuDS. Provision should be made within the layout for SuDS such as an attenuation pond located within the lower north-eastern extent of the site, facilitating gravity drainage. However, SuDS should be located outside of the surface water flood extent.

Where possible, provision should also be made for surface water conveyance features such as swales together with permeable paving for private driveways.

Concept Surface Water Drainage Scheme

Surface water runoff will be discharged to the 225mm public surface water sewer located in Smock Lane at the 1 in 1 year greenfield runoff rate of 61.4 l/s subject to agreement with UU and the LLFA. A gravity connection can be achieved.

Surface water runoff up to the 1 in 100 year plus 40% climate change allowance event will be attenuated on site. Provision should be made for an attenuation pond in the lower north-eastern extent of the site (however, outside of the surface water flood extent). A provisional attenuation volume of 1,694m³ will be required to achieve the discharge rate. Where possible, provision should also be made for surface water conveyance features such as swales in order to provide sufficient treatment to runoff from access roads.

Exceedance Event

Storage will be provided for the 1 in 100 year plus 40% CC event. Storm events in excess of the 1 in 100 year plus 40% CC event should be permitted to produce temporary shallow depth flooding within the access roads and landscaped areas. Finished floor levels should be set at a minimum of 150mm above surrounding ground levels ensuring exceedance flooding will not affect the buildings.

Surface Water Treatment

In accordance with the CIRIA C753 publication 'The SuDS Manual' (2015), residential roofs have a 'very low' pollution hazard level, with roads with greater than 300 traffic movements per day classified as having a 'medium' pollution hazard level. Table 2 shows the pollution hazard indices for each land use.

Table 1 – Pollution Hazard Indices

Land Use	Pollution Hazard Level	Total Suspended Solids (TSS)	Metals	Hydrocarbons
Residential Roofs	Very Low	0.2	0.2	0.05
Roads	Medium	0.7	0.6	0.7

Table extract taken from the CIRIA C753 publication 'The SuDS Manual' – Table 26.2

* Indices values range from 0-1.

Where practical, runoff from roofs and roads will be directed to an attenuation pond. There is also potential for the use of swales, and permeable paving for driveways. Table 3 shows the pollution mitigation offered by ponds, swales and permeable paving.

Table 2 – SuDS Mitigation Indices

	Mitigation Indices						
Type of SuDS	Total Suspended Solids (TSS)	Metals	Hydrocarbons				
Ponds	0.7	0.7	0.5				
Swales	0.5	0.6	0.6				
Permeable paving	0.7	0.6	0.7				

Table extract taken from the CIRIA C753 publication 'The SuDS Manual' – Table 26.3

As shown in Tables 2 and 3, a pond in isolation will not offer sufficient treatment for hydrocarbons from roads with greater than 300 traffic movements per day. In order to ensure sufficient treatment is provided for runoff from roads, swales should be used in conjunction with a pond, or a suitably sized separator or filtration unit should be placed upstream of the pond.

Maintenance

Communal drainage features such as ponds and swales can be offered for adoption to United Utilities who will then be responsible for maintenance. Alternatively, maintenance of shared surface water drainage systems can be arranged through appointment of a site management company.

Maintenance schedules for ponds, swales and permeable paving are included in Appendix J.

Foul Drainage

The UU sewer records show that there is a 225mm public combined sewer located within Garswood Road. The cover and invert levels are not available. However, based on site levels, a pumped solution to the combined sewer in Garswood Road would be required from the lower eastern extent of the site. There is also a 150mm public foul sewer approximately 40m east of the site flowing north-east within property gardens. The sewer crosses through an area of public open space approximately 40m north-east of the site. Public foul manhole 4902 is located within the area of public open space and could form a point of gravity connection from the development.

UU have stated that 'the foul point of connection is required to be assessed further and has now been referred to our asset management team'. UU have been consulted to provide further comment.

A gravity solution for foul flows from the development is available subject to UU agreement on connection points.

Conclusions

The proposed development is for approximately 258 residential properties with associated gardens and driveways, together with access roads and landscaping. This report has been prepared to support the development of the final Masterplan.

The site is located within Flood Zone 1 on the Environment Agency (EA) 'Flood Map for' – an area considered to have the lowest probability of fluvial and tidal flooding. The site is shown to be located outside of the extreme 0.1% annual probability fluvial flood extent.

The risk of flooding from all sources has been assessed. The north-eastern extent of the site is identified at risk of surface water flooding during a 'high risk' (greater than 3.3% annual probability) event. A surface water flood flow route crosses from west to east through the centre of the site during a 'low risk' (between a 1% and 0.1% annual probability) event.

Taking a sequential approach, no development (dwellings or gardens) should be located within the surface water flood extent identified by the EA 'Flood Risk from Surface Water' map. The extent of internal access roads within the flood extent should be minimised.

The proposed development will introduce impermeable drainage area in the form of buildings and access roads. This will result in an increase in surface water runoff. In order to ensure the increase in surface water runoff will not increase flood risk elsewhere, flow control will be used and attenuation provided on site to accommodate storm events up to and including the 1 in 100 year plus 40% climate change event.

All methods of surface water discharge have been assessed. Where infiltration is not feasible, a connection to the 225mm public surface water sewer in Smock Lane will be required. A gravity connection can be achieved. A provisional discharge rate of 61.4 l/s (1 in 1 year runoff rate) is proposed however is subject to agreement with UU and the LLFA.

Attenuation will be required in order to achieve a limited discharge rate. Provision should be made within the final site layout for an attenuation pond within the lower north-eastern extent of the site. However, the attenuation pond should be positioned outside of the surface water flood extent. A provisional attenuation volume of 1,694m³ will be required to accommodate the 1 in 100 year plus 40% CC event.

Where possible, provision should also be made for surface water conveyance features such as swales in order to provide sufficient treatment to runoff from access roads. Permeable paving should also be considered for private driveways.

The UU sewer records show that there is a 225mm public combined sewer located within Garswood Road. Based on site levels, a pumped solution to the combined sewer in Garswood Road would be required from the lower eastern extent of the site. There is also a 150mm public foul sewer approximately 40m east of the site flowing north-east within property gardens. The sewer crosses through an area of public open space approximately 40m north-east of the site. Public foul manhole 4902 is located within the area of public open space and could form a point of gravity connection from the development. The final connection points for foul flows are currently under further assessment with UU.

A Concept Designer's Risk Assessment (cDRA) has been prepared to inform future designers of any identified hazards associated with the scheme. The cDRA has been included in Appendix K.

Recommendations

- 1. Place all dwellings and gardens outside of the surface water flood extent. Access roads within the flood extent should be minimised.
- 2. Undertake BRE 365 infiltration testing to determine the suitability of infiltration techniques.
- 3. Make provision for sustainable drainage features in the lower north-eastern extent of the site, however outside of the surface water flood extent.
- 4. Provide a suitable easement from Rivington Aqueduct which crosses the site.
- 5. Update this report upon further consultation responses from UU and the LLFA.

Appendix A Location Plan and Aerial Image

CONTAINS OS DATA © CROWN COPYRIGHT (2021)

ISTRE	NOTES: 1) ALL DIMEN ABOVE ORD	ISIONS ARE IN NANCE DATUM	METRES AND A UNLESS STATI	ALL LEVEL ED OTHER	.S IN I WISE	METRES
WROAD	LEGENL)				
	S	ite Bound	ary			
DELL'SIDE CL	V	Vatercours	ses / Wate	r Bodie	es	
reen						
Some The second	BILLING	E Gars	SM6			Bryn Gates rôn
Coopart HEG	CLIENT:	Chady Green				
AVIEN CLO	Ĩ	Pe Toge	ersin ether, we r	nm nake a	l O hor	ne.
5	V		ate	er	С	0
		www.	waterco	.co.u	k	
	SCHEME: WE	ATHER GA	COCK H ARSWO	IILL F OD	ĀF	RM,
	PLOT TITLE:	LOC	ATION F	PLAN		
ROAD	PLOT STATUS	S: FINA			DATE 1	:: 7/03/2021
	DRAWN: VJ	CHECKED: JR	APPROVED: VG	PLOT SC	ALE @ 1:5,0 STATED	A3: 00 OTHERWISE)
	PLOT NAME:	13809-Loc	ation_Plan			REV: -
	1					

CONTAINS OS DATA © CROWN COPYRIGHT (2021) BASEMAP: WORLD IMAGERY. SOURCES: ESRI, DIGITALGLOBE, GEOEYE, I-CUBED, EARTHSTAR GEOGRAPHICS, CNES/AIRBUS DS, USDA, USGS, AEX, GETMAPPING, AEROGRID, IGN, IGP, SWISSTOPO, GIS USER COMMUNITY

Appendix B Topographical Data

AV API, VAULE/ADST IC INSTECT CAMPAGE BOL BOLLARAK LAW NAME ADST NAMESE BOL BOLLARAK LAW NAME ADST NAMESE BM BOLON HARK LP LAW NAMESE BM BOLON HARK LP LAW NAMESE BS BERTST HEEDON LP LAW NAMESE BS BERTST HEEDON LP LAW NAMESE BS BERTST HEEDON LP LAW NOST CT LAW NAMESE LP LAW CT DEVENDED LP LAW NOST CT DEVENDE LP NAMESE NOST CT DEVENDE PR POST SIGN POST DEUESTED PK UNKNOWN SERVEC NE ELE ELEC INCO INFORMER RN ROST INFORMER FN REMORANT STORT TAP N FN REMORANT STORT TAP N	
SYMBOLS	
NOTES	
A) ONLY MANHOLES AND SERVICES VISIBLE AT TIME OF SURVEY SHOWN	
B) O/S USED AND ORIENTATED TO TRUE NORTH	
C) LEVELS IN METRES RELATED TO G.P.S.	
D) DRAINAGE INFORMATION TAKEN FROM LOCAL AUTHORITY RECORDS. INFORMATION MUST BE CHECKED PRIOR TO WORK COMMENCING	
Rev Description Date	
PROPOSED DEVELOPMENT AT BILLINGE ROAD, GARSWOOD	
PERSIMMON HOMES (North West)Ltd	

PH245 / TOC)	Date	MARCH 2021
		Scale	1:1250 @ A3
		RUP Surveyir AND SURVEYORS YREFIELD COTTAGE YREFIELD ROAD OBY MILL PHOLLAND ANCASHIPE	ng Consultants Ltd
		WEBSITE E-MAIL:	TEL: 01257 251554 MOBILE: 07710 308709 : www.rjpsurveyors.co.uk mail@rjpsurveyors.co.uk

CONTAINS OS DATA © CROWN COPYRIGHT (2021) © ENVIRONMENT AGENCY COPYRIGHT AND/OR DATABASE RIGHT (2021). ALL RIGHTS RESERVED.

	NOTES: 1) ALL DIM ABOVE OR	ensions are in dnance datum	METRES AND A UNLESS STATI	ALL LEVELS ED OTHERW	IN METRES /ISE
~/		Site Bound	ary		
	+	Site Levels			
	Groun	d Elevatior	n (m AOD)	
		<82			
		82-84			
		84-86			
<i>∕</i> √		86-88			
5		88-90			
X		>90			
~ I					
\sim					
		- 181 0/1-0			
	122	5-12-0	ANG		Bryn
				5) Br	Gates
\sim	BILLIN	GE			
5	Crank	Gars	word	T	AGUETA
E		Green	vick	1.2	MAKER
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Moss/ Banik	h/e	al -	AL	
$\sim$		el ser		<u>ه</u>	-23 GO
	CLIENT:	<u> </u>			
Sm		MI Pe	ersin	nm	on
		Toge	ether, we r	nake a l	nome.
_ }			_		
3 (			ate	en	
A.		www.\	waterco	.co.uk	
4	SCHEME:			E	
	vv	TES: LL DIMENSIONS ARE IN METRES AND ALL LEVELS IN METRES VOU CORDANCE DATUM UNLESS STATED OTHERWISE GEND Site Boundary Site Boundary Site Levels TOURD Elevation (m AOD) <82 82-84   84-86 86-88   88-90 >90   >90 >90			
1		-			
5 5	PLOT TITLI	E:			
$f \in \langle \cdot \rangle$		LIDAR		TIONS	5
5		1m	RESULUTI	UN	
	PLOT STAT			ſ	DATE: 17/03/2021
(LU)	DRAWN:	CHECKED:		PLOT SCA	LE @ A3:
كر ا	VJ	JR	VG	(UNLESS ST	1:2,000
5	PLOT NAM	E:			REV:
		13809	-Lidar		-

### Appendix C Historical Borehole Record





Version 2.0.6.3

BGS ID: 9432 : BGS Reference: SD50SW193 British National Grid (27700) : 354880,400020 <u>Report an issue with this borehole</u>

<< < Prev Page 1 of 1 V Next > >>

Sampling		Pro	perti	es	Str	ata 35488, 401	002	*****			
Depth	Туре	Cu kPe	w%	SPT N	Desc	ription SD50SW 193		Depth	Level	Leg	gend
					NA	DE GROUND: Bleck top**		G.L.	69.30	****	
		1			MA	DE GROUND: Stone ballast**		÷ 0:20	68.90	*****	
a Geological Surrey					Sa	ndy brown clay**		F Balabia	indea Saniej		
_								Ē_			
								F			
1.50-1.95	SD			12		It to firm annublack associated		£ 1.40	67.90		
					mo	ttled brown very sandy CLAY with	some sub	ŧ	1		
2.00	B				gr	avel.		<u>-</u>			
								E o			
-		9						F	1	-	
3 00-3 45	en.			14				È			
_ 3.00-3.43	50			14	Me	dium dense grey-brown occasional i	Y CAUD	E 3.00	66.30		
					WI	th much clay and some fine and me unded gravel.	dium sub	ŧ			
				1				F			Ē
4.00	8				Gr	ey-brown occasionally mottled bla	ck very	E 4.00	65.30		
n Geological Clurky		1			en	ayey SILT with some sand and some a modium sub-rounded gravel.	fine	E Orthern Geo	ing the Guide		
4.50-4.95	SD			18	100			E			
								E		77	
								F		-	
					1			È			
5 80-4 00						8		F			
6.00-6.50	6 ÚR				-	iff anew-brown CLAY with according		5.80	63.50		
_ 0.00-0.00					por	thets (>30mm) of orange-brown fin fium sand.	e and	F			
6.50-6.95	U				1			E. 3			
					1			-			
_ 6.95	D							<u> </u>			
7.50-8.00	B				Fi	m to stiff grev-brown very sandy	CLAY	7.50	61.80		
Geographic and Street					wit Riffe	h much silt and sub-angular fine	gravel.	pilut for	aniety States		
_ 8.00-8.45	U				19640			COURSE AND	A A lot at the second		+1
8 50	52							E			
8.50-8.95	U							E # 70	60.40	*	
9.00	D		8		Gre	y thinly bedded moderately weath STONE/SILISIONE (fine sandy in p	ered		AU 20		
					1 rec	overed as sand and gravel.		F /	00.50		╧
		1 8						E			1
					Erre	of Borehole		E			1
<u> </u>						of borenote		F			
Location		Co-ordi	nates:	•		Ground Level: 69.30m A00	Chai	nage:		J	di in a
Drilling					Gro	undwater					
Туре	From	То	Size	Fluid	Struck	Behaviour	Sealed	Date	Hole	Cased	Wat
Cable	GL	9.00	0.15		5.80	Rose to 3.50m in 30 minutes.	7.50	27.10.89	9.00	9.00	8.
rðadot tál Súvey					Bitte	Nůsoučival Sourie		Billei Ger	lojka Save		
Remarks	L	nspect	ion pit	hend (	excavat	ed to 1.40m. **Drillers descript	ion. Stan	dpipe insta	lled at 9	.00m de	pth.
Borehole I	Recor	d			Proj	ect Victoria Road, Garswood		Contract	D91	05/1	
<u></u>		s	t Helens Metropolitan Borough		Bernhalt			<del>,</del>			
E Explo	ration	1 Ass	ociat	es		enne en sense alta de la contra d		Borenole	34	(1 of 1)	

### Appendix D United Utilities Sewer Plan and Correspondence





How to contact us:

United Utilities Water Limited Property Searches Haweswater House Lingley Mere Business Park Great Sankey Warrington WA5 3LP

Telephone: 0370 7510101

E-mail: propertysearches@uuplc.co.uk

Your Ref: 13809-Weathercock Hill Farm Our Ref: UUPS-ORD-255396 Date: 05/03/2021

Waterco Waterco

lon parcwr, ruthin, denbighshire II15 1nj

FAO:

Dear Sirs

#### Location: 430 GARSWOOD ROAD, ASHTON-IN-MAKERFIELD, WIGAN, WN4 0XJ

I acknowledge with thanks your request dated 01/03/2021 for information on the location of our services.

Please find enclosed plans showing the approximate position of United Utilities' apparatus known to be in the vicinity of this site.

The enclosed plans are being provided to you subject to the United Utilities terms and conditions for both the wastewater and water distribution plans which are shown attached.

If you are planning works anywhere in the North West, please read United Utilities' access statement before you start work to check how it will affect our network. <u>http://www.unitedutilities.com/work-near-asset.aspx</u>.

I trust the above meets with your requirements and look forward to hearing from you should you need anything further.

If you have any queries regarding this matter please contact us.

Yours Faithfully,





### TERMS AND CONDITIONS - WASTEWATER AND WATER DISTRIBUTION PLANS

These provisions apply to the public sewerage, water distribution and telemetry systems (including sewers which are the subject of an agreement under Section 104 of the Water Industry Act 1991 and mains installed in accordance with the agreement for the self construction of water mains) (UUWL apparatus) of United Utilities Water Limited "(UUWL)".

#### **TERMS AND CONDITIONS:**

- This Map and any information supplied with it is issued subject to the provisions contained below, to the exclusion of all others and no party relies upon any representation, warranty, collateral contract or other assurance of any person (whether party to this agreement or not) that is not set out in this agreement or the documents referred to in it.
- This Map and any information supplied with it is provided for general guidance only and no representation, undertaking or warranty as to its accuracy, completeness or being up to date is given or implied.
- In particular, the position and depth of any UUWL apparatus shown on the Map are approximate only. UUWL strongly recommends that a comprehensive survey is undertaken in addition to reviewing this Map to determine and ensure the precise location of any UUWL apparatus. The exact location, positions and depths should be obtained by excavation trial holes.
- The location and position of private drains, private sewers and service pipes to properties are not normally shown on this Map but their presence must be anticipated and accounted for and you are strongly advised to carry out your own further enquiries and investigations in order to locate the same.
- The position and depth of UUWL apparatus is subject to change and therefore this Map is issued subject to any removal or change in location of the same. The onus is entirely upon you to confirm whether any changes to the Map have been made subsequent to issue and prior to any works being carried out.
- This Map and any information shown on it or provided with it must not be relied upon in the event of any development, construction or other works (including but not limited to any excavations) in the vicinity of UUWL apparatus or for the purpose of determining the suitability of a point of connection to the sewerage or other distribution systems.
- No person or legal entity, including any company shall be relieved from any liability howsoever and whensoever arising for any damage caused to UUWL apparatus by reason of the actual position and/or depths of UUWL apparatus being different from those shown on the Map and any information supplied with it.
- If any provision contained herein is or becomes legally invalid or unenforceable, it will be taken to be severed from the remaining provisions which shall be unaffected and continue in full force and affect.
- This agreement shall be governed by English law and all parties submit to the exclusive jurisdiction of the English courts, save that nothing will prevent UUWL from bringing proceedings in any other competent jurisdiction, whether concurrently or otherwise.



Length Grad	LEG	DENU
	Abandoned Foul Surf	ace Water Combined
	· · · · · · · · · · · · · · · · · · ·	Public Sewer Private Sewer
		Section 104
		Sludge Main
	····•	→ Water Course
		- ≁ Highway Drai
	All point assets follow the s red - combined b brown - foul pur	standard colour convention: lue - surface water ple - overflow
	- Montale	Cido Entre Marchala
	<ul> <li>wannole</li> <li>^{HS} Head of System</li> </ul>	<ul> <li>Side Entry Manhole</li> <li>Outfall</li> </ul>
	E De della 5	Screen Chamber
	<ul> <li>Rodaing Eye</li> <li>Inlet</li> </ul>	Bifurcation Chamber
	Discharge Point	Lamp Hole
	<ul> <li>Vortex</li> <li>Penstock</li> </ul>	Catchpit
	Washout Chamber	<ul> <li>Valve Chamber</li> <li>Vent Column</li> </ul>
	<ul> <li>Valve</li> <li>Air Valve</li> </ul>	Vortex Chamber
	• Non Return Valve	Penstock Chamber
	Soakaway	Sewer Overflow
	<ul> <li>Gully</li> <li>Cascade</li> </ul>	Ww Treatment Works
	[™] Flow Meter	Ww Pumping Station Septic Tank
	Hatch Box	Control Kiosk
	OII Interceptor Summit	
	Orifice Plate	V Change of Characteristic
	- Childer late	
	МАННО	LE FUNCTION
	FO I	Foul Surface Water
	SW S	Combined
	0V C	Dverflow
	SEW	IER SHAPE
	CI Circular	TR Trapezoidal
	EG Egg	AR Arch
	OV Oval	BA Barrel
	FT Flat Top	HU HorseShoe
	SQ Square	
	SEWE	RMATERIAL
	AC Asbest	os Cement
	BR Brick	
	PE Polyeth	iylene
	RP Reinfor	te
	CSB Concre	te Segment Bolted
	CSU Concre	te Segment Unbolted
	CC Concre	te Box Culverted
	GRC Glass	Reinforecd Plastic
	DI Ductile	Iron
	PVC Polyvin	yl Chloride
	Cl Cast Iro	on
	Si Spun Ir ST Steel	011
	VC Vitrified	Clay
	PP Polypro	pylene
	PF Pitch F	ibre
	MAC Mason MAR Mason	ry, Coursed ry, Random
-	U Unspec	
	Address or	Site Reference:
	430 GARS ASHTON-IN W	vvOOD ROAD, I-MAKERFIELD, IGAN, N4 0XJ
	<b>Scale:</b> 1:1250	<b>Date:</b> 05/03/2021
	Shoot	1 of 1
	Printed by:	Property Searches

### **Jessica Roberts**

From:	Wastewater Developer Services <wastewaterdeveloperservices@uuplc.co.uk></wastewaterdeveloperservices@uuplc.co.uk>
Sent:	17 March 2021 12:04
То:	Jessica Roberts
Cc:	Wastewater Developer Services
Subject:	4200037987 Weathercock Hill Farm, Billinge Road, Leyland Green, Seneley Green, Garswood, St Helens, North West, WN4 0SP
Categories:	Info

### Good morning Jessica,

### <u>Pre Development Enquiry for: Weathercock Hill Farm, Billinge Road, Leyland Green, Seneley Green,</u> <u>Garswood, St Helens, North West, WN4 0SP UU Reference Number : 4200037987</u>

We have carried out an assessment of your application which is based on the information provided. This predevelopment advice on your drainage strategy will be valid for 12 months. Your drainage strategy will need to be reviewed by other competent authorities as part of the planning process, and we advise that you carry out the necessary site investigations to confirm the viability of your proposals.

If your investigations require access to our public sewer network, we ask that you contact our network engineers with a request for an access certificate via our main contact telephone number 0345 3723223 or refer to the link below:

https://www.unitedutilities.com/builders-developers/working-near-our-assets/

#### Foul Water

Foul flow from this site will be allowed to drain into the public foul water/combined sewer system.

The foul connection point is required to be assessed further and has now been referred to our asset management team.

If you are able to identify an alternative, more suitable point of discharge, we request that you contact us at your earliest convenience so that we can assess suitability.

In accordance with our infrastructure plans we may ask you to change your point of connection. Therefore please contact us when you are ready to formalise your drainage proposals, we would suggest before you submit for Full Planning.

#### Surface Water

All surface water flow from the proposed development should drain in-line with the drainage hierarchy, as outlined in Paragraph 80, (Reference ID: 7-080-20150323), of the National Planning Practice Guidance. We also recommend you prioritise the use of multi-functional sustainable drainage systems for the management of surface water in accordance with national planning policy.

Generally, the aim should be to discharge surface run off as high up the following hierarchy of drainage options as reasonably practicable.

This is outlined as follows, in order of priority:

- 1. into the ground (infiltration);
- 2. to a surface waterbody;
- 3. to a surface water sewer or highway drain;

### 4. to a combined sewer.

For guidance, The North West SuDS Pro-Forma provides information on the appropriate evidence required at each stage of the hierarchy, to demonstrate how each level has been discounted.

The Lead Local Flood Authority has responsibility for all surface water drainage concerns and their input to your proposal is critical. You should also consider whether it is necessary to discuss your proposal with the Environment Agency, or Internal Drainage Board (if operating in your area).

The Local Planning Authority are the determining authority for any application for planning permission and the appropriate authority for determining cost viability of a proposed drainage scheme, such assessments are outside of the jurisdiction of United Utilities.

### **Infiltration**

Surface water runoff generated from this development should discharge to the ground via infiltration system where feasible.

A detailed evidence based feasibility assessment must be carried out in line with Chapter 25 of the CIRIA SuDS Manual 2015 to determine whether infiltration is a suitable method of surface water disposal.

Particular attention must be paid to Ground Water Source Protection Zones to ensure that the risk of pollution to these valuable resources is not compromised. Details can be obtained from the government website: <a href="https://www.gov.uk/guidance/groundwater-source-protection-zones-spzs#find-groundwater-spzs">https://www.gov.uk/guidance/groundwater-source-protection-zones-spzs#find-groundwater-spzs</a>

If your site is in a Groundwater Source Protection Zone, you should have regard to the Environment Agency's approach to Groundwater Protection. Information on this is available via the link below:

### https://www.gov.uk/government/publications/groundwater-protection-position-statements

Please note that such a location could have implications for the principle of your development and the need for additional mitigating measures to protect the groundwater environment and public water supply in the detailed design of your site.

### Waterbody

If an evidence based assessment has been carried out and confirms that infiltration is not feasible, we recommend that you contact the Lead Local Flood Authority and/or Environment Agency to discuss a point of discharge to the open ordinary watercourse's located both north and south of the proposed site.

### We would encourage you to identify and engage with any third party landowner and riparian owner to agree access and discharge rights to the water body if this is not in your ownership.

We would advise you to contact and discuss climate change factors with the LLFA.

### Highway Drainage

If an evidence based assessment has been carried out and confirms that infiltration is not feasible, we recommend that you investigate the possibility of draining surface water to the highway drain where this ultimately discharges to a watercourse, by contacting the relevant Highway Authority.

### **Levels**

For low-lying sites, (where the ground level of the site or the level of a basement is below the ground level at the point where the drainage connects to the public sewer), care should be taken to ensure that the property is not at increased risk of flooding. If these circumstances exist, we recommend that you contact us to discuss further. It could affect

the detailed design of your site and result in the need to incorporate appropriate mitigating measures in your drainage scheme.

### Land drainage / Overland flows / track drainage

United Utilities have no obligation, and furthermore we do not accept land drainage, overland flows or track drainage into the pubic sewerage network <u>under any circumstances</u>

### Sewer Adoptions

You have indicated on your application form that you intend to put the sewers forward for adoption (including any SuDS components that can come within the meaning of a sewer).

United Utilities assess adoption applications based on the current Design & Construction Guidance and local practices which have now replaced 'Sewers For Adoption 6th Edition'.

We recommend that you submit a pre design assessment to the sewer adoption mailbox (<u>SewerAdoptions@uuplc.co.uk</u>) stating pre design assessment in the title

Please refer to links below to obtain further guidance:

https://www.unitedutilities.com/builders-developers/larger-developments/wastewater/sewer-adoptions/

Site drainage must be designed in accordance with Building Regulations, National Planning Policy, and local flood authority guidelines, we would recommend that you speak and make suitable agreements with the relevant statutory bodies.

If you intend to put forward your wastewater assets for adoption by United Utilities, the proposed detail design will be subject to a technical appraisal by an Adoption Engineer as we need to be sure that the proposals meets the requirements set out in the Design & Construction Guidance. The proposed design should give consideration to long term operability and give United Utilities a safe and cost effective proposal for the lifetime of the assets. In these cases, we strongly recommend that no construction commences until the detailed drainage design, submitted as part of the Section 104 application, has been assessed and accepted in writing by United Utilities. Any work carried out prior to the technical assessment being approved is done entirely at the developer's own risk and could be subject to change.

### **Codes For Adoption**

The new Codes for Adoption are outlined on the Water UK Website. The link below takes you to their webpage:

https://www.water.org.uk/technical-guidance/developers-services/codes-for-adoption/

A free copy of the new Design & Construction Guidance can be downloaded via the link below:

https://www.water.org.uk/wp-content/uploads/2020/03/SSG-App-C-Des-Con-Guide-v-2-100320-C.pdf

### **Existing Water Assets Crossing the Site**

### The Rivington Aqueduct crosses your site please refer to the information below for your consideration.

It is the developer responsibility to identify utilities on-site. Where clean water assets are shown on our records, we recommend that you contact our Water Pre-Development Team, via the following email address:

<u>DeveloperServicesWater@uuplc.co.uk</u>. Further information for this service can be found on our website via the link below:

https://www.unitedutilities.com/builders-developers/larger-developments/pre-development/water-pre-dev/

### **Connection Application**

Although we may discuss and agree discharge points and rates in principle, please be aware that you will have to apply for a formal sewer connection. This is so that we can assess the method of construction, Health & Safety requirements and to ultimately inspect the connection when it is made. Details of the application process and the form itself can be obtained from our website by following the link below:

### https://www.unitedutilities.com/builders-developers/larger-developments/wastewater/sewer-connections/

We recommend that the detailed design should confirm the locations of all utilities in the area and ensure that any proposed drainage solution considers routing and clash checks where required.

If we can be of any further assistance please don't hesitate to contact us further.

Kind regards,

Shoaib.



Shoaib Tauqeer Developer Engineer Developer Services & Metering M: 07876745601 unitedutilities.com

### If you have received a great service today why not tell us? Visit: unitedutilities.com/wow

Did you know we now have a live chat facility available to you Mon to Friday 8 -5pm. You just click on the orange live chat box on our webpage and one of our advisors will be ready to chat to you and help you with your enquiry <u>https://www.unitedutilities.com/builders-developers/</u> or you can email us at <u>developerserviceswater@uuplc.co.uk</u>



Click for our message to customers

From: Jessica Roberts [mailto:jessica.roberts@waterco.co.uk] Sent: 05 March 2021 12:04 To: Wastewater Developer Services <WastewaterDeveloperServices@uuplc.co.uk>

Subject: 13809- Pre Developer Enquiry Request

Proposed residential development at Weathercock Hill Farm, Billinge Road, Leyland Green, Seneley Green, Garswood, St Helens, North West, WN4 0SP.

Dear Sir/Madam,

### Appendix E Indicative Development Plan







### Key Site Boundary Sensitive Interfaces with existing Residential Properties Poor & Gappy Field Boundary Hedges Key Views out of the

X ) C

Site

Existing Trees & Tree Groups

Potential Vehicular Access Points

Potential Pedestrian/ Cycle Access Points

Potential to Continue Building Line

Trunk Water Main Easement

# 

	1
Project Title	
Weathercock Hill Fa	rm, Garswood
e*SCAPE Job No.	1 E IP
019-009	
Client	
Persimmon Homes I	North West
Drawing Number	Revision
019-009-P002	REV -
Drawing Title	and the second s
Constraints & Oppo	rtunities Plan

I:2,500 @ A3

March'19



<u>DO NOT SCALE FROM THIS DRAWING</u> ALL DIMENSIONS MUST BE VERIFIED AT THE SITE BEFORE SETTING OUT, COMMENCING WORK OR MAKING ANY SHOP DRAWINGS.

HOUSE TYPE MIX						
Housetype	Desc	ription	SQFT		Number Of Units	%
Madisson bungalow	1 storey 2 b	ed	650	SQFT	8	3.1007752
Gilby bungalow	1.5 storey 3	bed	1184	SQFT	4	1.5503876
Alnmouth mid (Alnwick)	2 Storey 2 E	Bed	643	SQFT	5	2
Alnmouth end (Alnwick)	2 Storey 2 E	Bed	643	SQFT	8	3
Hanbury semi (Barton)	2 Storey 3 E	Bed	761	SQFT	20	8
Hanbury mid (Barton)	2 Storey 3 E	Bed	761	SQFT	4	2
Hanbury end (Barton)	2 Storey 3 E	Bed	761	SQFT	8	3
Rufford det (buttermere)	2 Storey 3 E	Bed	870	SQFT	6	2
Rufford semi (Buttermere)	2 Storey 3 E	Bed	870	SQFT	26	10
Souter end (Windermere)	3 Storey 3 E	Bed	951	SQFT	18	7
Souter mid (Windermere)	3 Storey 3 E	Bed	951	SQFT	11	4
Hatfield (Derwent)	2 Storey 3 E	Bed	969	SQFT	13	5
Clayton (Lockwood)	2 Storey 3 E	Bed	999	SQFT	23	9
Roseberry (Hornsea)	2 Storey 4 b	ed	1096	SQFT	44	17
Kendal (Kendal)	2 storey 4 b	ed	1190	SQFT	43	17
Chedworth (Coniston)	2 storey 4 b	ed	1222	SQFT	17	7
					258	
AFFORDABLE						
Hanbury	2 Storey 3 E	Bed	761	SQFT	0	0
Alnwick	2 Storey 2 E	Bed	638	SQFT	0	0
					0	
TOTAL			253808	SQFT	258	
Gross Site Area	24 75	Acres	10.02	Hectare	20	
Undevelopable	2 19	Acres	0.8862711	Hectare		
Public open space	5	Acres	2.02	Hectare	es	
Nett Site Area:	17.56	Acres	7.11	Hecta	res	
Gross Density:	10.42	Units/Acre	25.76	Units/H	ectare	
Nett Density:	14.69	Units/Acre	36.31	Units/	Hectare	
Gross Footage:	10254.87	SQFT/Acre	2354.17	SQM/H	ectare	
Nett Footage:	14453.76	SQFT/Acre	3318.09	SQM/	Hectare	



Manchester M41 0UH Tel: 0161 746 3737 Fax: 0161 748 3272 SITE BILLINGE ROAD, GARSWOOD TITLE VIABILITY LAYOUT SCALE 1:500@A0 DATE 17.03.21 DRAWN BY SDA -NUMBER BRG/SDA/01

### Appendix F EA Flood Maps





CONTAINS OS DATA © CROWN COPYRIGHT (2021) © ENVIRONMENT AGENCY COPYRIGHT AND/OR DATABASE RIGHT 2021. ALL RIGHTS RESERVED. SOME FEATURES OF THIS MAP ARE BASED ON DIGITAL SPATIAL DATA FROM THE CENTRE FOR ECOLOGY AND HYDROLOGY, © NERC (CEH). © CROWN COPYRIGHT AND DATABASE RIGHTS 2004 ORDNANCE SURVEY 100024198

ISTRE	NOTES: 1) ALL DIMENSIONS ARE IN METRES AND ALL LEVELS IN METRES	
-	ABOVE ORDNANCE DATUM UNLESS STATED OTHERWISE	
ROAD	Site Boundary	
13	EA Main Rivers	
LSID	EA Flood Zone 3	
	EA Flood Zone Z	
on		
la f		
reen		
1		
N.		
01		
AVP		
28		
FA		5
人间	Be SMG	ryn toe
	Bin ch	
	BILLINGE	ß
	Crank Garstwood	ro
	Green 24 MAK	ER
(HES)	Barik	00
CP THE	23-	uv
CLOUGI		
	<b>Dersimmon</b>	
SVIEN CL	Together, we make a home.	
Es		
-71	aterco	)
	www.waterco.co.uk	
	GARSWOOD	
	PLOT TITLE:	
		6
ROAD	PLOT STATUS: DATE:	1
-		·
	VJ JR VG (INI ESS GTATED ATHEND	
	PLOT NAME: REV:	13E)
	13809-EA_FZ_FM -	



CONTAINS OS DATA © CROWN COPYRIGHT (2021) EA FLOODING FROM RESERVOIR DATA © CROWN COPYRIGHT (2021)



CONTAINS OS DATA © CROWN COPYRIGHT (2021) © ENVIRONMENT AGENCY COPYRIGHT AND/OR DATABASE RIGHT (2021). ALL RIGHTS RESERVED.

ISTRE	NOTES: 1) ALL DIMEN ABOVE ORDI	SIONS ARE IN IANCE DATUM	METRES AND A UNLESS STATI	ALL LEVEL ED OTHER	_S IN WISE	METRES
WROAD		, 				
		ite Bound	ary			
DELLSIDE CL		listorical F	lood Map			
reen						
Sement in ock street	BILLING	Gars	SM6		Işmî	Bryn Gates rch
COORAL THE	Moss Bank Client:	Green		9. 9.a		GO
AVIEN	Ē	Toge	ersin other, we r	nm nake a	l <b>O</b> ho	<b>n</b> e.
5	V		ate	er	C	C
		WWW.	vaterco	.co.u	k	
	SCHEME: WE	ATHER GA	COCK H ARSWO	HILL F OD	A	₹M,
	PLOT TITLE: EA	HISTOR DATA ACC	CICAL FI	LOOE ARCH 20	<b>) N</b> 21	IAP
ROAD	PLOT STATUS: FINAL				DAT	E: 17/03/2021
	DRAWN: VJ	DRAWN: CHECKED: APPROVED: PLOT S VJ JR VG (UNLES:				@ A3: 000 D OTHERWISE) REV:
	. LOT NAME.	13809-E	EA_Hist			-



CONTAINS OS DATA © CROWN COPYRIGHT (2021) © ENVIRONMENT AGENCY COPYRIGHT AND/OR DATABASE RIGHT 2021. ALL RIGHTS RESERVED. SOME FEATURES OF THIS MAP ARE BASED ON DIGITAL SPATIAL DATA FROM THE CENTRE FOR ECOLOGY AND HYDROLOGY, © NERC (CEH). © CROWN COPYRIGHT AND DATABASE RIGHTS 2004 ORDNANCE SURVEY 100024198

### Appendix G LLFA Correspondence



### Jessica Roberts

From: Sent: To: Cc: Subject:

05 March 2021 19:55 Jessica Roberts Kieran Philip Birch Re: 13809-LLFA request

### Afternoon Jessica

I hope you are well and keeping safe.

My name is Matthew Catherall from St Helens Council LLFA. I am replying to your email regarding your 13809-LLFA request for information in terms of a potential planning application.

<u>Proposed residential development at Weathercock Hill Farm, Billinge Road, Leyland Green, Seneley Green,</u> <u>Garswood, St Helens, North West, WN4 0SP.</u>

At this stage of the development and level of information, I am unable to provide formal comment on the layout or proposed drainage method. I am able to provide generic advice and guidance for the development along with answers to a few of your queries.

In terms of flood risk, there has been surface water runoff flooding from the farmland onto the highway Smock Lane (near the junction of Smock Lane and Billinge Road B5207), this is representative of the EA surface water flood risk mapping (30, 100, 1000 year return period).

St Helens Council have our own SuDS Guidance that is available in the link below. The files include the main guidance and local standards, a separate checklist for developers which needs to be submitted with each application, and a surface water runoff calculator. The runoff calculator is currently not available as it is going through technical updates. The full SuDs hierarchy will have to be followed for this development.

https://www.sthelens.gov.uk/traffic-travel-parking/highway-maintenance/flooding-and-drainage/sustainable-drainage/

The NPPF climate change figures have now been superseded with higher values (40% is Council planning baseline) as shown in the government report (19th February 2019) and we will expect to see the surface water discharge rate to be at set to Greenfield runoff for the development. The site catchment discharge must follow where possible the natural drainage paths / location.

I hope the above answers your queries, if you have further questions, please get back in contact

Regards

Matthew Catherall LLFA

### Appendix H REFH2 Greenfield Runoff Rates



DOCUMENT VERIFICATION RECORD				
Project:	Weathercock Hill Farm, Garswood			
Client:	Persimmon Homes Ltd			
Report Title:	13809-FRA + DRA-01			
Date:	27/04/2021			

DOCUMENT REVIEW & APPROVAL				
Author:	Jessica Roberts BSc (Hons)			
Checker:	Aled Williams BSc (Hons) MCIWEM			
Approver:	Victoria Griffin BSc (Hon) MSc MIEnvSc CEnv			

ReFH2 RUNOFF RATES*						
Return Period (Years)	As-rural Peak Flow (I/s)					
1	61.40653					
2	69.26882					
5	96.42207					
10	116.6967					
30	153.7728					
50	174.6119					
75	193.859					
100	209.2663					
200	253.5452					
1000	393.2832					

*Runoff Rates printed from the ReFH Flood Modelling software package



### Appendix I MicroDrainage Simulation



Waterco Ltd						Page 1
Eden Court		13809	-Weath	ercock H	ill Farm	
Lon Parcwr Business Pa	rk	Garsw	ood			
Denhighshire I.I.15 1N.1	r	1 in	100 ve	ar plus	40% CC	A Resolution
		Decia	rod bu	TD	100 00	MICLO
		Desig	nea by	UR		Drainage
File 13809-1 in 100 ye	ar +40	Check	ed by	AW		
XP Solutions		Sourc	e Cont	rol 2020	.1.3	
Summary of	Results f	for 100	year	Return P	eriod (+40%)	
Sto	orm Ma	ах Мах	. Max	Max	Status	
Eve	ent Lev	vel Dept	h Contr	ol Volume		
	(п	n) (m)	(1/s	) (m³)		
15 mi	n Summor Q	103 0 10	3 61	1 937 6	OK	
30 mi	n Summer 9 6	542 0 64	2 61	4 1091 8	O K	
60 mi	n Summer 9.7	786 0.78	6 61	.4 1336.9	Flood Risk	
120 mi	n Summer 9.8	359 0.85	9 61	.4 1460.3	Flood Risk	
180 mi	n Summer 9.8	375 0.87	5 61	.4 1487.6	Flood Risk	
240 mi	n Summer 9.8	374 0.87	4 61	.4 1485.9	Flood Risk	
360 mi	n Summer 9.8	860 0.86	0 61	.4 1462.0	Flood Risk	
480 mi	n Summer 9.8	835 0.83	5 61	.4 1420.1	Flood Risk	
600 mi	n Summer 9.8	304 0.80	4 61	.4 1367.5	Flood Risk	
720 mi	n Summer 9.7	768 0.76	8 61	.4 1306.1	Flood Risk	
960 mi	n Summer 9.6	596 0.69	6 61	.4 1182.5	0 K	
1440 mi	n Summer 9.5	569 0.56	9 61	.4 966.8	ОК	
2160 mi	n Summer 9.4	130 0.43	61	.3 731.4	O K	
2880 mi 4220 mi	n Summer 9.3 n Summer 0.3	$344 \ 0.34$	4 60	.1 584.6	OK	
4320 III 5760 mi	n Summer 9.2	272 0.27 239 0 23	Z JZ	7 401.0	O K O K	
7200 mi	n Summer 9/2	239 0.23	9 39	2 371 9	O K	
8640 mi	n Summer 9.2	204 0.20	4 35	.2 346.4	0 K	
10080 mi	n Summer 9.1	.92 0.19	2 32	.1 326.9	0 K	
15 mi	n Winter 9.5	54 0.55	4 61	.4 941.6	ΟK	
30 mi	n Winter 9.7	23 0.72	3 61	.4 1229.7	Flood Risk	
St	corm	Rain E	looded	Discharge	Time-Peak	
Ex	vent (n	nm/hr) '	Volume	Volume	(mins)	
			(m³)	(m³)		
1.5 m	in Summer 13	37.991	0.0	848.9	17	
30 m	in Summer 9	91.711	0.0	1134.5	32	
60 m	in Summer 5	58.232	0.0	1466.7	62	
120 m	in Summer 3	34.279	0.0	1727.7	120	
180 m	in Summer 2	25.097	0.0	1897.8	180	
240 m	in Summer 2	20.091	0.0	2026.0	206	
360 m	in Summer 1	4.646	0.0	2215.6	268	
480 m	in Summer 1	1.674	0.0	2354.7	334	
600 m	in Summer	9.781	0.0	2466.1	404	
720 m	in Summer	8.461	0.0	2559.5	470	
960 m	in Summer	0.124	0.0	2/11.7	6UU 950	
1440 m	in Summer	4.00U 3 561	0.0	2948.4 2015 1	200 1000	
2100 m 2880 m	in Summer	2 861	0.0	3243.1 3473 Q	1552	
4320 m	in Summer	2.122	0.0	3855.8	2244	
5760 m	in Summer	1.731	0.0	4209.6	2944	
7200 m	in Summer	1.485	0.0	4513.8	3672	
8640 m	in Summer	1.315	0.0	4793.0	4408	
10080 m	in Summer	1.190	0.0	5051.7	5144	
15 m	in Winter 13	37.991	0.0	953.1	17	
30 m	in Winter 9	91.711	0.0	1272.9	32	

						Page 2
Eden Court		1380	9-Weather	cock H	ill Farm	1
Lon Parcwr Busi	ness Park	Gars	wood			A second second
Denbighshire L	L15 1NJ	l in	100 vear	plus	40% CC	Micco
Date 19/04/2021		Desi	aned by J	I I I I		
File 13809-1 in	100 vear + 40	Chec	ked by AW	1		Drainag
VP Solutions	100 year +10.	Sour	ce Contro	1 2020	1 3	
AI SOLUCIONS		SOUL		1 2020	• 1 • 5	
Sum	mary of Result:	s for 10	0 vear Re	turn P	eriod (+40%)	
<u></u>		0 101 10	o jour in	, out 1	01100 (*100)	
	Storm	Max Ma	x Max	Max	Status	
	Event	Level Dep	th Control	Volume		
		(m) (n	1) (1/s)	(m³)		
	60 min Winter	9.887 0.8	87 61.4	1508.4	Flood Risk	
	120 min Winter	9.973 0.9	73 61.4	1653.7	Flood Risk	
	180 min Winter	9.996 0.9	96 61.4	1693.9	Flood Risk	
	240 min Winter	9.994 0.9	94 61.4	1690.1	Flood Risk	
	360 min Winter 480 min Winter	9 922 N 0	09 61.4	1585 6	Flood Risk	
	600 min Winter	9.888 0.8	88 61.4	1510.3	Flood Risk	
	720 min Winter	9.839 0.8	39 61.4	1426.7	Flood Risk	
	960 min Winter	9.726 0.7	26 61.4	1234.2	Flood Risk	
	1440 min Winter	9.531 0.5	31 61.4	902.6	0 K	
	2160 min Winter	9.347 0.3	47 60.2	589.8	OK	
	4320 min Winter	9.227 0.2	27 41.3	385.3	0 K	
	5760 min Winter	9.199 0.1	99 34.0	338.8	0 K	
	7200 min Winter	9.182 0.1	82 29.3	308.7	0 K	
	8640 min Winter	9.169 0.1	69 26.0	287.2	0 K	
	Storm	Rain	Flooded Di	scharge	Time-Peak	
	Event	(mm/hr)	Volume V	Volume (m ³ )	(mins)	
			(111 )	()		
	60 min Winter	58.232	0.0	1643.5	60	
	120 min Winter	34.279	0.0	1935.8	118	
	240 min Winter	20 091	0.0	2269 9	1/4 226	
	360 min Winter	14.646	0.0	2482.4	282	
	480 min Winter	11.674	0.0	2638.2	360	
	600 min Winter	9.781	0.0	2762.9	436	
	720 min Winter	8.461	0.0	2867.5	512	
	you min Winter 1440 min Winter	6./24 4.880	0.0	3304 5	604 896	
	2160 min Winter	3.561	0.0	3635.0	1232	
	2880 min Winter	2.861	0.0	3891.6	1532	
	4320 min Winter	2.122	0.0	4321.2	2248	
	5760 min Winter	1.731	0.0	4714.9	2992	
	7∠00 min Winter 8640 min Winter	1 315	0.0	5369 2	308U 4416	
	10080 min Winter	1.190	0.0	5661.3	5144	

©1982-2020 Innovyze

Waterco Ltd			Page 3
Eden Court	13809-Weathercock Hill	Farm	
Lon Parcwr Business Park	Garswood		
Denbighshire I.I.15 1NJ	1 in 100 year plus 40%	CC	A Boston
Date 19/04/2021	Designed by JR		MICIO
File $13809-1$ in 100 year $\pm 40$	Checked by AW		Drainage
VD Colutions	Course Control 2020 1 2		Construction of the second
XP Solutions	Source control 2020.1.3		
Ra	infall Details		
Rainfall Mode		FEH	
Return Period (years	3)	100	
FEH Rainfall Versio	n	2013	
Site Locatio	n GB 355151 399944 SJ 55151	99944 Decimate	
Summer Storn	)e ns	Yes	
Winter Storm	as	Yes	
Cv (Summer	<u>;</u> )	0.750	
Cv (Winter	<u>(</u> )	0.840	
Shortest Storm (mins Longest Storm (mins	5) 5)	⊥5 10080	
Climate Change	20 20	+40	
Tin	ne Area Diagram		
Tota	al Area (ha) 3.379		
Ti	me (mins) Area		
Fr	om: To: (ha)		
	0 3 3 379		
	0 0 0.075		
©198	2-2020 Innovyze		

Waterco Ltd	Page 4		
Eden Court	13809-Weathercock Hill Farm		
Lon Parcwr Business Park	Garswood		
Denbighshire LL15 1NJ	1 in 100 year plus 40% CC		
Date 19/04/2021	Designed by JR		
File 13809-1 in 100 year +40	Checked by AW		
XP Solutions	Source Control 2020.1.3		
<u>M</u>	Model Details		
Storage is On.	line Cover Level (m) 10.000		
Tank	or Pond Structure		
Inve	rt Level (m) 9.000		
Depth (m) Are	ea $(m^2)$ Depth $(m)$ Area $(m^2)$		
0.000	1700.0 1.000 1700.0		
Hydro-Brake®	Optimum Outflow Control		
Init	Poference MD_SUF_0321_6140_1000_6140		
	m Head (m) 1.000		
Design	Flow (1/s) 61.4		
	Flush-Flo™ Calculated		
A	Objective Minimise upstream storage		
Sump	Available Yes		
Dia	meter (mm) 321		
Invert	Level (m) 8.995		
Suggested Manhole Dia	meter (mm) 2100		
Control Po:	ints Head (m) Flow (1/s)		
Design Point (Ca	$a_{1}$ ( $a_{1}$ ) $a_{2}$ ( $a_{2}$ ) $a_{3}$ ( $a_{2}$ ) $a_{3}$ ( $a_{3}$ ) $a_{3}$ ) $a_{3}$ ( $a_{3}$ ) $a_{3}$ ) $a_{3}$ ( $a_{3}$ ) $a_{3}$ ( $a_{3}$ ) $a_{3}$ ) $a_{3}$ ) $a_{3}$		
F	Flush-Flo™ 0.477 61.4		
	Kick-Flo® 0.804 55.3		
Mean Flow over H	Head Range - 48.6		
The hydrological calculations have been based on the Head/Discharge relationship for the Hydro-Brake® Optimum as specified. Should another type of control device other than a Hydro-Brake Optimum® be utilised then these storage routing calculations will be invalidated			
Depth (m) Flow (1/s) Depth (m) Flow	w (l/s) Depth (m) Flow (l/s) Depth (m) Flow (l/s)		
0.100 9.6 1.200	67.1 3.000 104.6 7.000 158.2		
0.200 32.8 1.400	72.2 3.500 112.8 7.500 163.7		
0.300 57.8 1.600	77.1 4.000 120.4 8.000 168.9		
0.400 61.0 1.800	81.6 4.500 127.5 8.500 174.0		
0.600 60.6 2.200	30.0 5.500 140.6 9.000 179.0		
0.800 55.5 2.400	93.8 6.000 146.7		
1.000 61.4 2.600	97.6 6.500 152.6		
01.00			







### Appendix J SuDS Maintenance Schedules





### **Operation and Maintenance Requirements for Ponds and Wetlands**

Maintenance Schedule	Required Action	Typical Frequency	
	Remove litter and debris	Monthly (or as required)	
	Cut the grass – public areas	Monthly (during growing season), or as required	
	Inspect marginal and bankside vegetation and remove nuisance plants (for first 3 years)	Monthly (at start, then as required)	
	Inspect inlets, outlets, banksides, structures, pipework etc for evidence of blockage, and / or physical damage.	Monthly	
	Inspect water body for signs of poor water quality	Monthly (May – October)	
Regular maintenance	Inspect silt accumulation rates in any forebay and in main body of the pond and establish appropriate removal frequencies; undertake contamination testing once some build-up has occurred, to inform management and disposal options.	Half yearly	
	Check any mechanical devices e.g. penstocks	Half yearly	
	Hand cut submerged and emergent aquatic plants (at minimum of 0.1m above pond base; include max 25% of pond surface)	Annually	
	Remove 25% of bank vegetation from water's edge to a minimum of 1m above water level	Annually	
	Remove sediment from any forebay	Every 1 – 5 years, or as required	
	Remove sediment and planting from one quadrant of the main body of ponds without sediment forebays	Every 5 years, or as required	
Occasional maintenance Remove sediment from the main body of big ponds when pool volume is reduced by 20%		With effective pre-treatment, this will only be required rarely, e.g. 25-50 years	
Remedial actions	Repair erosion or other damage	As required	
	Replant where necessary	As required	
	Aerate pond when signs of eutrophication are detected	As required	
	Realign rip-rap or repair other damage	As required	
	Repair/rehabilitate of Inlets, outlets and overflows	As required	

Ref. Table 23.1 CIRIA C753 'The SuDS Manual'



The maintenance requirements detailed above are to be undertaken by the site owner.

Name	:
Position	:
Date	:
Signed on behalf of the site owner	:



### **Operation and Maintenance Requirements for Swale**

Maintenance Schedule	Required Action	Typical Frequency	
	Remove litter and debris	Monthly (or as required)	
	Cut the grass – to retain grass height within specified design range	Monthly (during growing season), or as required	
	Manage other vegetation and remove nuisance plants	Monthly at start, then as Required	
	Inspect inlets, outlets and overflows for blockages, and clear if required	Monthly	
Regular maintenance	Inspect infiltration surfaces for ponding, compaction, silt accumulation, record areas where water is ponding for > 48 hours	Monthly, or when required	
	Inspect vegetation coverage	Monthly for 6 months, quarterly for 2 years, then half yearly	
	Inspect inlets and facility surface for silt accumulation, establish appropriate silt removal frequencies	Half yearly	
Occasional maintenance	Reseed areas of poor vegetation growth, alter plant types to better suit conditions, if required	As required or if bare soil is exposed over 10% or more of the swales treatment area	
	Repair erosion or other damage by re-turfing or reseeding	As required	
Remedial actions	Relevel uneven surfaces and reinstate design levels	As required	
	Scarify and spike topsoil layer to improve infiltration performance, break up silt deposits and prevent compaction of the soil surface	As required	
	Remove build-up of sediment on upstream gravel trench, flow spreader or at top of filter strip	As required	
	Remove and dispose of oil or petrol residues using safe standard practices	As required	

Ref. Table 17.1 CIRIA C753 'The SuDS Manual'

The maintenance requirements detailed above are to be undertaken by the site owner.



Name	:
Position	:
Date	:
Signed on behalf of the site owner	:



### **Operation and Maintenance Requirements for Permeable Paving**

Maintenance Schedule	Required Action	Typical Frequency	
Regular maintenance	Brushing and vacuuming (standard cosmetic sweep over whole surface)	Once a year, after autumn leaf fall, or reduced frequency as required, based on site-specific observations of clogging or manufacturer's recommendations – pay particular attention to areas where water runs onto pervious surface from adjacent impermeable areas as this area is most likely to collect the most sediment	
Occasional	Stabilise and move contributing and adjacent areas	As required	
maintenance	Removal of weeds or management using glyphospate applied directly into the weeds by an applicator rather than spraying	As required – once per year on less frequently used pavements	
Remedial actions	Remediate any landscaping which, through vegetation maintenance or soil slip, has been raised to within 50mm of the level or the paving	As required	
	Rehabilitation of surface and upper substructure by remedial sweeping	Every 10 to 15 years or as required (if infiltration performance is reduced due to significant clogging)	
Monitoring	Inspect for evidence of poor operation and / or weed growth – if required, take remedial action	Three-monthly, 48hr after large storms in first six months	
	Inspect silt accumulation rates and establish appropriate brushing frequencies	Annually	
	Monitor inspection chambers	Annually	

Ref. Table 20.15, CIRIA C753 'The SuDS Manual'

The maintenance requirements detailed above are to be undertaken by the site owner.

Name	:
Position	:
Date	:
Signed on behalf of the site owner	:

### Appendix K CDRA





Project:	Weathercock Hill Farm			Project No:	13809
Client:	Persimmon Homes Ltd				
Report Reference:	13809-FRA + DRA-01				
Prepared by:	Jessica Roberts BSc (Hons)	Date:	19/04/2021		
Checked by:	Aled Williams BSc (Hons) MCIWEM	Date:	27/04/2021		
Reviewed by:	Victoria Griffin BSc (Hon) MSc MIEnvSc Cenv	Date:	27/04/2021		

#### Requirement:

The Construction (Design and Management) Regulations 2015 (CDM 2015) place an obligation on the Designer to take all reasonable steps to provide, with the design, sufficient information about the design, construction or maintenance of the structure, to adequately assist the client, other designers and contractors to comply with their duties under CDM. The Designer has undertaken this assessment to identify any extra-ordinary risks, or those that would not be expected on this particular project by an experienced and competent Contractor. The aim is to avoid needless paperwork and bureaucracy and ensure the assessment is project specific, relevant and proportionate to the risk.

#### DRA Summary

Each of the following risk areas has been considered using the question below. Is a risk present which is considered to be extra-ordinary or unexpected in this instance?

If YES - A detailed risk assessment is required at design stage

If UNKNOWN - Insufficient information has been provided at concept design stage and the risks are unknown. Further consideration must be given at design stage(s) If NO - No further action is required.

Hazard Ref.	Risk Areas	YES, UNKNOWN or NO	Comments
1	Ground Conditions	Unknown	Pennine coal measures - may be in site coal mining area
2	Hazardous Environment	Unknown	
3	Existing Working Environment	Unknown	
4	Existing Services	Unknown	Rivington Aqueduct (water main) crosses the site.
5	Proximity to Other Structure(s)	Unknown	
6	Near Waterbody / flood risk	Unknown	Potential surface water flood risk during heavy rainfall
7	Proximity to Other Activities	Unknown	
8	Sequence of Construction	Unknown	
9	Access	Unknown	
10	Interfaces	Unknown	
11	Confined Space Working	Unknown	
12	Maintenance Considerations	Unknown	
13	Working at Height	Unknown	
14	Steep Slopes	No	
15	Demolition / Refurbishment / Repair	Unknown	
16	Welfare	Unknown	
17	Occupational Health	Unknown	
18	Environmental Issues	Unknown	
19	Other Significant Hazards not Identified Above	Unknown	
20	Residual Risk to Future Users	Unknown	